我院教师在《Economic Modelling》发表论文
发布日期:2023-02-24 供稿人:罗晓燕 浏览次数:1369
近日,我院教师张秦在《Economic Modelling》发表题为《Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms》的论文。
Elsevier旗下期刊《Economic Modelling》创办于1984年,主要发表经济建模相关的理论和实证论文。近5年影响因子3.875,2022年引用分数4.8,是JCR经济学领域的一区期刊。
论文简介:
The ability to estimate current GDP growth before official data are released, known as nowcasting, is crucial for the Chinese government to effectively implement economic policy and manage economic uncertainties; however, there is limited research on nowcasting China's GDP in a data-rich environment. We evaluate the performance of various machine learning algorithms, dynamic factor models, static factor models, and MIDAS regressions in nowcasting the Chinese annualised real GDP growth rate in pseudo out-of-sample exercise, using 89 macroeconomic variables from years 1995 to 2020. We find that some machine learning methods outperform the benchmark dynamic factor model. The machine learning method that deserves more attention is ridge regression, which dominates all other models not only in terms of nowcast error but also in effective recognition of the impacts of the Global Financial Crisis and Covid-19 shocks. Policy-wise, our study guides practitioners in selecting appropriate nowcasting models for China's macroeconomy.
作者介绍:
张秦,男,福建省福州市人,1989年2月生。浙江工商大学泰隆金融学院讲师,经济学博士,本科毕业于澳大利亚悉尼大学,博士毕业于澳大利亚麦考瑞大学。在Empirical Economics,Accounting and Finance, Economic Modelling发表学术论文且有多篇正在审稿,主要研究领域:大数据计量经济学的理论和应用,宏观经济建模,经济预测,金融时间序列,中国宏观经济和货币经济学等。曾获得麦考瑞大学国际优秀生全额奖学金。